首页> 外文OA文献 >The drag-adjoint field of a circular cylinder wake at Reynolds numbers 20, 100 and 500
【2h】

The drag-adjoint field of a circular cylinder wake at Reynolds numbers 20, 100 and 500

机译:雷诺数下圆柱尾迹的拖曳伴随场   20,100和500

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper analyzes the adjoint solution of the Navier-Stokes equation. Wefocus on flow across a circular cylinder at three Reynolds numbers, Re_D=20,100 and 500. The quantity of interest in the adjoint formulation is the drag onthe cylinder. We use classical fluid mechanics approaches to analyze theadjoint solution, which is a vector field similar to a flow field. Productionand dissipation of kinetic energy of the adjoint field is discussed. We alsoderive the evolution of circulation of the adjoint field along a closedmaterial contour. These analytical results are used to explain three numericalsolutions of the adjoint equations presented in this paper. The adjointsolution at Re_D=20, a viscous steady state flow, exhibits a downstream suctionand an upstream jet, opposite of the expected behavior of a flow field. Theadjoint solution at Re_D=100, a periodic 2D unsteady flow, exhibits periodic,bean shaped circulation in the near wake region. The adjoint solution atRe_D=500, a turbulent 3D unsteady flow, has complex dynamics created by theshear layer in the near wake. The magnitude of the adjoint solution increasesexponentially at the rate of the first Lyapunov exponent. These numericalresults correlate well with the theoretical analysis presented in this paper.
机译:本文分析了Navier-Stokes方程的伴随解。我们关注三个雷诺数(Re_D = 20,100和500)在圆柱体上的流动。伴随公式中感兴趣的数量是圆柱体上的阻力。我们使用经典的流体力学方法来分析伴随解,这是一个类似于流场的矢量场。讨论了伴随场动能的产生与消散。我们还推导了伴随场沿封闭材料轮廓的循环演化。这些分析结果用于解释本文提出的伴随方程的三个数值解。 Re_D = 20时的伴随解是粘性稳态流,表现出下游吸力和上游射流,与流场的预期行为相反。 Re_D = 100(一个周期性的二维非定常流动)的伴随解在近尾流区域表现出周期性的豆形循环。伴随解决方案Re_D = 500(湍流3D非恒定流)具有由近尾时的剪切层创建的复杂动力学。伴随解的大小以第一李雅普诺夫指数的速率成指数增加。这些数值结果与本文提出的理论分析很好地相关。

著录项

  • 作者

    Wang, Qiqi; Gao, Junhui;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号